skip to main content


Search for: All records

Creators/Authors contains: "Joshaghani, Mohammad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In order to fully understand the thermo-hydro-mechanical behavior of the geotechnical infrastructures, the effects of temperature variations on soil properties and soil behavior have to be studied. Hydraulic conductivity, strength, volume change, moisture content, and pore pressure generation and dissipation rates depend on temperature variations. Thermal loading might induce excess pore water pressure and volumetric changes. Temperature changes in the fine-grained soils will cause expansion in water and soil particles. Since the coefficient of expansion for soil particles is much smaller than that for water, a generation of pore water pressure is expected. This thermally induced pore water pressure and then its dissipation during the relaxation period results in a time dependent consolidation. Thermal consolidation in fine grained soil is more dominant and can be irreversible in normally consolidated clay. However, the volumetric changes of highly over consolidated soil caused by temperature increment is reversible by temperature reduction. In this research, a modified consolidation testing device is used to study the effect of temperature increments (e.g., increasing step by step temperature increments to 80ÂșC) on the consolidation of fine grained soils. In another words the effect of temperature increments during the test on the consolidation process is studied. Time of applying the heating, target temperature, and initial void ratio are parameters affecting the rate and the amount of consolidation in the samples. 
    more » « less